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Abstract

Vibrational methods are frequently used as diagnostic tools to detect damage in structures. One of the main difficulties

connected with the use of such methods lies in the small sensitivity of the dynamic parameters to damage. This is an

intrinsic feature of structural diagnostics based on dynamic data. It represents a source of important indeterminacy, such

as the strong dependence of the results of identification on the experimental errors and on the accuracy of the structural

model that is chosen to interpret measurements. Application of dynamic techniques to the case of steel–concrete composite

beams, in addition, makes the problem more complicated, owing to the uncertainty about the mechanical behaviour of the

connection and damage modelling. Previous research on vibrational methods for damage detection in composite beams

was concerned with the identification of severe levels of damage. In this paper we present an Euler–Bernoulli model

of composite beam which accurately describes the dynamic response measured on composite beams with either severe or

intermediate levels of damage. A diagnostic technique based on frequency measurements is then applied to the suggested

model and it gives positive results. A Timoshenko model of composite beam is also derived and used for diagnostic

purposes.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we continue a line of research initiated in Ref. [1] and aim at the study and development of
non-destructive methods for damage detection in steel–concrete composite structures from dynamic test data.

Steel–concrete composite system is widely used in bridge construction and also for long-span building
floors, see, for example, Ref. [2]. The global structural behaviour is achieved by shear connectors placed
between the concrete slab and the steel beams. Assessment of the connection integrity is obviously of primary
importance for evaluating the safety of the system. In ageing bridges, for example, the condition of the
connectors may not be good due to the occurrence of corrosion and fatigue phenomena or to unexpected
overloading. Failure or even damage of the shear connectors will significantly reduce the composite action
and, therefore, reduce the bridge load-carrying capacity. Since the inaccessibility of the connection makes the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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inspection difficult, it is of practical importance to develop non-destructive techniques to assess the integrity of
the connection, see, for instance, Ref. [3].

Within the large class of methods of non-destructive testing, dynamic techniques have received great
attention in engineering communities in last decades, see, for example, Refs. [4–7]. In fact, unlike other
conventional diagnostic methods, such as radiography, thermal analysis or techniques based on penetrating
liquids, which have local character, modal analysis techniques offer potential advantages for damage detection
in a global scale.

One attempt to detect damage in steel–concrete composite beams via dynamic methods has been originally
developed in Refs. [8,9]. In those papers, a series of composite beams were studied dynamically in laboratory,
in both undamaged and damaged states. Vibrational methods were used to calibrate a mechanical model of
the system and to localise the damage in the connection. The analysis concerned with severe levels of damage,
corresponding to the extreme case where concrete surrounding a damaged connector is thoroughly degraded
and the connection is fully plasticised. For these levels of damage, the mechanical model proposed in Ref. [9]
was able to accurately describe the dynamic behaviour measured during the experiments and, moreover, was
successfully used for damage detection purposes.

The main goal of this paper is to fill the gap concerning the mechanical modelling and damage identification
for composite beams with partially damaged connection, that is for intermediate levels of damage. This aspect
is of large importance when non-destructive methods based on dynamic measurements are employed to detect
possible damage in structures. In fact, one of the main hindrances to the practical use of these techniques lies
in the relatively small sensitivity of the dynamic parameters to damage. This feature of the diagnostic problem
reflects into a series of practical difficulties, even in the study of simple systems, such as notched steel beams
and frames. In fact, it is well known that the results of most diagnostic techniques strictly depend on the
accuracy of the analytical model used for the interpretation of experiments, on the measurement errors and on
the damage severity to be identified, see, for example, Refs. [10–12]. Application of these techniques to assess
structural integrity of steel–concrete composite beams, in addition, makes the diagnostic problem more
involved, owing to the uncertainty about the modelling of the connection and the description of the damage.
Therefore, the study of the sensitivity of dynamic parameters to small levels of damage (see Ref. [13]) and the
development of accurate analytical models of composite beams with partially degraded connection are central
points of the analysis.

In this paper, a dynamic Euler–Bernoulli model of composite beam based on a shear model of the
connection is proposed for the interpretation of the experimental results carried out in Ref. [13] and for the
identification of damage. The model accurately describes the dynamic behaviour observed in the experiments
and allows for a rather precise identification of either severe or intermediate damages. In the last section of the
paper, the model is refined accordingly to Timoshenko theory and used to improve damage detection results.

2. A shearing-type Euler–Bernoulli model

The analysis developed in this paper will mainly concern with the Euler–Bernoulli model of composite beam
presented below. Such a model differs from that defined in Ref. [9] in the expression of the shearing strain
energy of the connection. Nevertheless, for the sake of completeness, a brief general introduction to the
mechanical model follows.

The quantities relative to the concrete beam and to the steel beam will be denoted by indices i ¼ 1; 2,
respectively, see Fig. 1. To simplify notation and since the analysis will refer to this particular situation, the
case of uniform composite beam will be considered. Let ðOi;X i;Y i;ZiÞ, i ¼ 1; 2, be a Cartesian coordinate
system whose origin Oi coincides with the barycentre Gi of the ith transversal cross-section. The axes X i, Y i,
i ¼ 1; 2, agree with the inertia principal directions of the ith transversal cross-section at Gi, i ¼ 1; 2. It is
assumed that the two axes Y i, i ¼ 1; 2, coincide with the same vertical direction Y and are oriented
downwards. The axes Zi, i ¼ 1; 2, define the direction Z of the longitudinal axis of each beam and they run
parallel at a distance e. The following analysis will consider the small free vibrations of the connected system in
the vertical plane Y � Z around a straight and not stressed equilibrium state.

The two beams forming the system can slide at the steel–concrete interface. Relative transversal
displacements between the two beams are allowed. As a consequence, in accordance with the Euler–Bernoulli
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Fig. 1. Steel–concrete composite beam: (a) longitudinal view; (b) transversal cross-section.
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Fig. 2. Displacements and rotational fields for the Euler–Bernoulli model.

M. Dilena, A. Morassi / Journal of Sound and Vibration 320 (2009) 101–124 103
theory of beams, the actual configuration of the system is described by assigning the axial displacements
uiðz; tÞ, i ¼ 1; 2, and transversal displacements viðz; tÞ, i ¼ 1; 2, of z abscissa’s transversal section at a moment
of time t, see Fig. 2. Under the assumption of linear elastic constitutive equations and of homogeneous
isotropic materials, the strain energy stored in the two beams at time t is given by

V bðtÞ ¼
X2
i¼1

1

2

Z L

0

ai

qui

qz

� �2

þ ji

q2vi

qz2

� �2
 !

dz, (1)

where L is the length of the composite beam, ai � EiAi and ji � EiJi are the axial stiffness and the bending
stiffness of the ith beam, i ¼ 1; 2. The quantities Ai and Ji are the area and the moment of inertia (evaluated
with respect to the axis X i) of the ith cross-section and Ei is Young’s modulus of the material.

Regarding modelling of the connection, a rigorous definition of the strain energy, even in the simple case of
undamaged state, would involve a detailed study of the three-dimensional interaction effects between the
connectors and the surrounding concrete. A full analysis of these effects is beyond the goals of this research
and, however, it would be extremely difficult to include in a mechanical model of reduced dimension. In
Ref. [9] a one-dimensional model for the case of undamaged system was proposed, see also Ref. [1]. Each stud
was ideally modelled as an equivalent beam, whose bottom and top ends were fixed to the steel beam flange and
to the concrete slab axis, respectively. Considering that the distance between two consecutive studs is short
with respect to the beam length, the strain energy in the connection was described in terms of an interface
energy density. This density function was the sum of three contributions: one relative to sliding in longitudinal
direction Z between the base and the head of the connector (shearing-type energy); a second term is due by the
occurrence of rotations at both ends of each connector (rotational-type energy); the last contribution comes
from the relative transversal displacement in Y direction (axial-type energy), see Ref. [9, Section 2] for more
details. This mechanical model proved to be accurate for the interpretation of the dynamic tests carried out by
Morassi and Rocchetto [8].
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Fig. 3. Steel–concrete composite beams investigated in experiments (see Ref. [13]): front view of (a) T1PR beam (partial connection) and

(b) T1CR beam (total connection); (c) transversal section. Lengths in millimetres.
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In Ref. [14] a slightly different model of undamaged composite beam was introduced, including other
coupling terms in the strain energy of the connection. The analytical results obtained in Ref. [14], compared
with the experimental findings found in Refs. [1,8], essentially show no significant improvement in the
accuracy with respect to the model developed in Ref. [9].

It is worth noticing that all the above mechanical models were tested on the undamaged composite beams
studied in the experiments carried out in Refs. [1,8], see Fig. 3. The thickness of the concrete slab (60mm) of
these specimens is very short with respect to the length of the connectors (about 50mm), and this special
geometry supports the equivalent beam model for the description of the connectors. Conversely, the thickness
of the slab is significantly greater than the stud length in several cases of practical interest, see Ref. [2].
Therefore, the equivalent beam model is not suitable for describing the actual strain energy of the connection.
In such cases, in fact, the interaction between studs and surrounding concrete is confined to a small region
of the slab near the steel–concrete interface and a different strain energy function of the connection must be
introduced.

Taking into account these considerations and with a viewpoint on real applications, the shearing-type model

of the connection has been adopted in this paper, see Refs. [15–21] for applications of a similar mechanical
model to composite beams under static loads. Moreover, as in Ref. [9], the axial strain energy of the
connection due to the possible occurrence of relative transversal displacements is taken into account, see also
Ref. [16]. Summing up, the strain energy of the connection of the present model is assumed as

V cðtÞ ¼

Z L

0

1

2
k u2 � u1 þ ec

qv1

qz
þ es

qv2

qz

� �2

dzþ

Z L

0

1

2
mðv2 � v1Þ

2dz. (2)

In Eq. (2), k ¼ kðzÞ and m ¼ mðzÞ are, respectively, the shearing and the axial stiffness per unit length of the
connection. The quantity ec denotes the distance between the barycentre of the slab and the steel–concrete
interface, whereas es is the distance between the barycentre of the steel beam and its top flange, see Fig. 1. The
first integral in the right-hand side of Eq. (2) is defined in terms of the global sliding ðu2 � u1 þ ecqv1=qzþ

esqv2=qzÞ along Z longitudinal direction occurring at the interface of the two materials, under the
Euler–Bernoulli kinematic hypothesis, see Fig. 2. The second contribution represents the strain energy due to
the relative transversal displacement ðv2 � v1Þ.
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Now, by adapting the arguments used in Ref. [9], the case of damaged connection can be also included in the
model. In this case, the stiffness coefficients k; m in Eq. (2) are replaced by their damaged values kd ;md , which,
for one end connector, are assumed to have the following expressions:

kdðzÞ ¼ kðzÞðwð0;L�dÞðzÞ þ jwðL�d ;LÞðzÞÞ,

md ðzÞ ¼ mðzÞðwð0;L�dÞðzÞ þ cwðL�d;LÞðzÞÞ. (3)

In Eq. (3), wI ðzÞ is the characteristic function of the interval I, I � ð0;LÞ, e.g. wI ðzÞ ¼ 1 if z 2 I and wI ðzÞ ¼ 0 if
z 2 ð0;LÞnI . Moreover, d is the length of the damaged zone and the quantities j;c are two non-dimensional
parameters which express the severity of the damage, with 0pjp1, 0pcp1. The values fj ¼ 1;c ¼ 1g
determine the undamaged state, whereas the pair fj ¼ 0;c ¼ 0g defines the most severe level of damage. The
latter corresponds to the extreme case where the connector cannot hinder relative longitudinal and transversal
displacements between the slab and the metallic beam. The intermediate levels of damage correspond to pairs
fj;cg such that 0ojo1, 0oco1. In Section 3, a procedure for estimating j;c from dynamic measurements
on damaged beams will be suggested.

Finally, the dynamic behaviour of the composite system is completed by assigning the expression of its
kinetic energy TðtÞ. Neglecting the influence of the rotation of the beam transversal sections, we have

TðtÞ ¼
X2
i¼1

1

2

Z L

0

ri

qui

qt

� �2

þ
qvi

qt

� �2
 !

dz, (4)

where ri is the linear mass density of the ith beam. For vibrations that are harmonic in time with radian
frequency o,

uiðz; tÞ ¼ uiðzÞ cosot; viðz; tÞ ¼ viðzÞ cosot, (5)

i ¼ 1; 2, the spatial variation of the free vibrations can be obtained by imposing the stationarity of the
Rayleigh quotient of the system under a suitable set of admissible configurations, see Ref. [22]. To fix ideas
and considering that experiments have been carried out on free–free beams, this set of boundary conditions
will be closely examined in the following. Therefore, the free vibrations are governed by the following system
of ordinary differential equations:

N 01 þ kdðu2 � u1 þ ecv
0
1 þ esv

0
2Þ þ o2r1u1 ¼ 0;

N 02 � kdðu2 � u1 þ ecv
0
1 þ esv

0
2Þ þ o2r2u2 ¼ 0;

T 01 þ mdðv2 � v1Þ þ o2r1v1 ¼ 0;

T 02 � mdðv2 � v1Þ þ o2r2v2 ¼ 0;

8>>>><>>>>: (6)

in ð0;L� dÞ [ ðL� d;LÞ. Here, the symbol ð Þ0means first derivative with respect to the spatial variable z. The
axial forces Ni ¼ NiðzÞ and the shear forces Ti ¼ TiðzÞ, i ¼ 1; 2, are given by

Ni ¼ aiu
0
i; i ¼ 1; 2,

T1 ¼M 0
1 � kdðu2 � u1 þ ecv

0
1 þ esv

0
2Þec,

T2 ¼M 0
2 � kdðu2 � u1 þ ecv

0
1 þ esv

0
2Þes (7)

and

Mi ¼ �jiv
00
i ; i ¼ 1; 2 (8)

are the bending moments. The differential system of Eq. (6) is completed by the assignment of the jump
conditions

½uiðL� dÞ� ¼ ½viðL� dÞ� ¼ ½v0iðL� dÞ� ¼ 0; i ¼ 1; 2,

½NiðL� dÞ� ¼ ½TiðL� dÞ� ¼ ½MiðL� dÞ� ¼ 0; i ¼ 1; 2, (9)

where ½f ðL� dÞ� � f ððL� dÞþÞ � f ððL� dÞ�Þ, and by the boundary conditions

NiðzÞ ¼ TiðzÞ ¼MiðzÞ ¼ 0; i ¼ 1; 2 at z ¼ 0 and z ¼ L. (10)
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The eigenvalue problem defined by Eqs. (6)–(10) can be solved in exact form for the undamaged system and
for damaged composite beams with stepwise constant coefficients see Refs. [9,23] for a comprehensive
analytical and numerical study. Generally speaking, a prevalence of transversal displacements (flexural

vibrations) or longitudinal displacements (axial vibrations) has been observed from the analysis of the first
lower modes. Conversely, the coupling between transversal and longitudinal vibrations increases as the mode
order rises.
3. Model calibration for composite beams with partially damaged connection

The model defined by Eqs. (6)–(10) will be used in this section to interpret the dynamic tests on composite
beams under severe and intermediate levels of damage. In particular, the experimental results obtained for
T1PR and T1CR specimens of Ref. [13] will be closely interpreted, see Fig. 3. The other pair of samples
considered in those experiments revealed no substantial new elements. As it is shown in Fig. 4, damage
corresponds to a symmetric notch of increasing depth induced by saw-cutting the base of the right-end
connector of the composite beam. Each damage configuration was obtained firstly by removing concrete
around the connector by using a cylindrical hole (80mm diameter) and punching it all through the slab with a
rotating tool. Subsequently, the concrete surrounding the stud was broken and removed. Then, the connector
was saw-cut at the wished depth by means of a controlled cog-rotating wheel. Filling the hole with a suitable
mortar mixture finally restored the solidarity between the r.c. slab and the connector. All the dynamic tests
were carried out only when the mortar mixture was completely cured (at least 1 month after filling).

Dynamic tests were performed by using an impulsive technique. Each beam was suspended by two steel wire
ropes to simulate free–free boundary conditions. Concerning flexural vibrations, the beam was excited
transversally and measurement of the transversal response was taken on one end section of the concrete slab
by a piezoelectric accelerometer. The modal components of the flexural modes were measured exciting
transversally on the slab extrados and on the flange intrados of the steel beam, at 21 orderly spaced points
along the beam axis. The frequency response function inertance was measured and natural frequencies and
mode shapes were extracted by means of a suitable curve-fitting algorithm; see Ref. [13] for a complete account
of the experiment. This measurement set-up was maintained also for all the damage configurations considered
in experiments. It was shown in Ref. [13] that the perturbation of the specimen due to the execution of the
damage has negligible effect on first two flexural modes and causes an error on higher frequencies which is—in
absolute value—at most of order 0.8% and 0.3% for beams with partial and total connection, respectively.
12.5 12.5 12.5 12.5

1.5 1.5 3 4.53 4.5

Damage D1 Damage D2 Damage D3 Damage D4

Fig. 4. Damage scenarios (from Ref. [13]). Length in millimetres.
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Frequency-induced changes that are below these threshold values may not be reliable for dynamic
characterization and damage assessment, since they could be masked by the perturbation of the specimen.

The model described by Eqs. (6), with j ¼ c ¼ 1 and boundary conditions as in Eq. (10), was used for the
interpretation of dynamic tests on undamaged beams. The mechanical and inertial coefficients of the slab and
the metallic beam were assumed equal to the values shown in Table 1. Young’s modulus E1 of the concrete
was taken equal to the origin tangent mean value E1 ¼ 42; 863MPa deduced in a series of single-axle
compressive stress tests performed on some material samples prepared during slab casting.

The values of the axial and shearing stiffness of the connection were determined according to the following
identification procedure based on dynamic data. A numerical study shows that the sensitivity of the (flexural)
vibration modes to uniform changes in axial stiffness increases with the mode order, see Fig. 5. Therefore,
since available data concern only the first four modes of vibration, the axial stiffness was determined in order
to minimise the Euclidean distance between the theoretical and the experimental fourth modes. More
precisely, starting from given nominal values m0, k0 of the parameters, the optimal value of the axial stiffness
was evaluated by solving the following minimum problem:

to find mopt such that F ðk0;moptÞ ¼ min
0omo2m0

F ðk0;mÞ, (11)

where

F ðk0;mÞ ¼ ðjv
exp
1 � vanal1 ðk0;mÞj2 þ jv

exp
2 � vanal2 ðk0;mÞj2Þ

1=2 (12)

and v
exp
i ¼ ðv

exp
i ðz1Þ; . . . ; v

exp
i ðzM ÞÞ, vanali ¼ ðvanali ðz1Þ; . . . ; v

anal
i ðzM ÞÞ, i ¼ 1; 2, are the experimental and the

analytical values of the fourth mode components evaluated at the points z1; . . . ; zM of the measurement grid.
Points in which the differences between experimental and analytical components are very large (typically the
two end points) were excluded from the expression of the objective function. The nominal value of the axial
Table 1

Physical parameters of the composite beams T1PR and T1CR tested in the experiments: (a) origin tangent value determined by single-axle

compressive stress tests on cylinders; (b) 30% of the mean secant value of the ultimate shearing resistance of the connectors, determined by

push-out tests (data from Refs. [8,13])

Parameter Value

Concrete slab

Length L 3.50m

Cross-sectional area A1 3:00� 10�2 m2

Moment of inertia J1 9:00� 10�6 m4

Linear mass density r1 (T1PR) 73.2 kg/m

Linear mass density r1 (T1CR) 77.2 kg/m

Young’s modulus E
ðaÞ
1

42,863MPa

Steel beam

Length L 3.50m

Cross-sectional area A2 1:64� 10�3 m2

Moment of inertia J2 5:41� 10�6 m4

Linear mass density r2 12.9 kg/m

Young’s modulus E2 210,000MPa

Shearing and axial stiffness

Nominal shearing stiffness k
ðbÞ
0 (T1PR) 0:936� 109 N=m2

Nominal shearing stiffness k
ðbÞ
0 (T1CR) 1:346� 109 N=m2

Identified shearing stiffness k (T1PR) 1:216� 109 N=m2

Identified shearing stiffness k (T1CR) 1:963� 109 N=m2

Identified axial stiffness m (T1PR) 2:749� 109 N=m2

Identified axial stiffness m (T1CR) 3:952� 109 N=m2
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Fig. 5. Natural frequency sensitivity ðqo2=qmÞ of the first five (flexural) vibration modes to uniform changes in axial stiffness of the

connection evaluated for nominal values (left) and identified values (right) of the parameters m, k.
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stiffness was evaluated via the analytical expression derived in Ref. [9] (Eq. (A.3)), namely

m0 ¼
10

7

EcAc=ec

D
, (13)

where ec ¼ 30mm and Ec ¼ 210; 000MPa, Ac ¼ 123mm2 are Young’s modulus and the cross-sectional area,
respectively. The length D ¼ L=np is the distance between any two equidistant studs, that is D ¼ 220mm,
D ¼ 150mm for specimens T1PR, T1CR, respectively, see Fig 3. The shearing stiffness nominal value k0

shown in Table 1 was taken equal to the 30% of the ultimate shearing resistance K0 of a connector resulting
from some push-out tests on samples, see Ref. [9]:

k0 ¼
K0

D
. (14)

The graph of the error function F (for fixed shearing stiffness) shows a single global minimum corresponding
to a value of the axial stiffness less than the nominal one, see Fig. 6.

Once the axial stiffness was estimated, the shearing stiffness was determined by imposing that the analytical
and the experimental frequencies associated to the fundamental mode coincide. The procedure was iterated
until negligible changes of the two parameters were obtained in subsequent steps. Typically, convergence was
achieved in two or three steps. It turns out that the optimal values of k are 1:30k0, 1:46k0 for the T1PR and
T1CR beam, respectively, whereas the optimal value of m is equal to 0:50m0.

Columns 2–4 of Tables 2 and 3 compare, respectively, experimental and analytical frequencies of flexural
vibration modes for T1PR and T1CR beams in undamaged configuration. The Euler–Bernoulli model
overestimates the measured frequencies and discrepancies are even higher as the mode order rises, following a
pattern similar to that of single homogeneous beam having equal slenderness. For the sake of completeness, a
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Table 2

Comparison between experimental and analytical frequencies (Euler–Bernoulli model) of flexural vibration modes for T1PR beam in

undamaged and damaged configurations (rigid motions are omitted)

Mode Undamaged Damage D1 Damage D2 Damage D3 Damage D4

Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D%

1 60.68 60.68 0.0 60.51 60.54 0.0 60.25 60.37 0.2 60.21 60.35 0.2 59.81 60.20 0.7

2 145.46 149.55 2.8 144.08 148.62 3.2 142.70 147.47 3.3 142.18 147.23 3.6 136.76 145.19 6.2

3 247.11 265.25 7.3 245.14 262.86 7.2 241.93 259.78 7.4 238.95 258.68 8.3 222.58 247.68 11.3

4 351.08 401.87 14.5 348.72 398.07 14.2 343.62 392.89 14.3 339.22 389.83 14.9 309.10 357.61 15.7

5 461.38 553.89 20.1 457.49 549.20 20.0 452.41 542.11 19.8 447.98 536.00 19.6 402.96 480.27 19.2

6 570.77 713.32 25.0 565.91 708.31 25.2 560.31 699.78 24.9 554.64 690.39 24.5 503.66 624.68 24.0

7 691.48 873.28 26.3 686.11 868.29 26.6 679.84 858.63 26.3 673.37 846.92 25.8 599.82 774.68 29.2

Identified values of the damaged parameters j and c as in Table 5. D% ¼ 100ðf anal � f expÞ=f exp. Frequency values in Hertz. Experimental

data from Ref. [13].

Table 3

Comparison between experimental and analytical frequencies (Euler–Bernoulli model) of flexural vibration modes for T1CR beam in

undamaged and damaged configurations (rigid motions are omitted)

Mode Undamaged Damage D1 Damage D2 Damage D3 Damage D4

Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D%

1 60.49 60.49 0.0 60.37 60.42 0.1 60.30 60.39 0.2 60.29 60.39 0.2 60.24 60.33 0.2

2 146.34 153.23 4.7 145.12 152.60 5.2 144.80 152.37 5.2 143.97 152.28 5.8 144.30 151.48 5.0

3 250.82 275.03 9.7 248.18 273.04 10.0 246.05 272.31 10.7 245.60 271.84 10.7 242.46 267.31 10.2

4 361.26 418.23 15.8 357.09 414.50 16.1 356.18 413.13 16.0 353.42 411.71 16.5 346.21 396.06 14.4

5 473.88 577.13 21.8 471.08 572.03 21.4 468.00 570.11 21.8 466.29 567.02 21.6 451.06 531.17 17.8

6 588.38 745.49 26.7 586.28 739.46 26.1 583.34 737.18 26.4 580.71 731.83 26.0 560.88 676.51 20.6

7 709.04 915.75 29.2 708.14 909.59 28.4 703.65 907.18 28.9 700.58 899.60 28.4 668.07 835.07 25.0

Identified values of the damaged parameters j and c as in Table 5. D% ¼ 100ðf anal � f expÞ=f exp. Frequency values in Hertz. Experimental

data from Ref. [13].

Table 4

Comparison between experimental and analytical natural frequencies of flexural vibration modes (rigid vibration modes are omitted) for

T1PR and T1CR beam in undamaged configuration

Mode Exp. value Shearing-type model Dð%Þ Model in Ref. [9] Dð%Þ

T1PR beam

1 60.68 60.68 0.0 60.68 0.0

2 145.46 149.55 2.8 137.43 �5.5

3 247.11 265.25 7.3 243.21 �1.6

4 351.08 401.87 14.5 373.14 6.3

5 461.38 553.89 20.1 521.04 12.9

6 570.77 713.32 25.0 678.24 18.8

7 691.48 873.28 26.3 837.18 21.1

T1CR beam

1 60.49 60.49 0.0 60.49 0.0

2 146.34 153.23 4.7 136.47 �6.7

3 250.82 275.03 9.7 241.65 �3.7

4 361.26 418.23 15.8 372.09 3.0

5 473.88 577.13 21.8 523.22 10.4

6 588.38 745.49 26.7 687.90 16.9

7 709.04 915.75 29.2 858.22 17.4

D% ¼ 100ðf anal � f expÞ=f exp. Frequency values in Hertz. Experimental data from Ref. [13].
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comparison with the mechanical model proposed in Ref. [9] is presented in Table 4. It can be seen that the
accuracy of the two models is quite similar. In addition, the shearing-type Euler–Bernoulli model avoids the
anomalous underestimate of the second and third frequencies predicted by the previous model. The first four
experimental flexural modes are reproduced with high accuracy, see, for example, Fig. 7 for T1PR beam.

The calibrated model is used as a baseline to define the mechanical model of damaged composite beam.
Once again, reference is made to the experimental results obtained in Ref. [13] for the two specimens T1PR
and T1CR. The damage was simulated by means of a crack of increasing depth produced on the right-end
connector, see Figs. 3 and 4. The interpretation of dynamic tests on damaged beams is based on the model
described by Eqs. (6), jump conditions (9) and boundary conditions (10). Putting d ¼ 0:25 and 0:18m as
length of the damaged region for T1PR and T1CR, respectively, it is evident that an accurate description of
the dynamic behaviour of composite beam with partially damaged connection requires a careful choice of the
unknown parameters kd and md or, equivalently, of j and c, in Eq. (3). In this analysis, no attempt is made to
express the values j;c in terms of the real damage present at the damaged connector. This would require
a detailed knowledge of degradation, which is often unavailable in advance in inverse analysis. Therefore,
the unknown parameters are identified from frequency shifts measured between undamaged and damaged
configurations.

As a preliminary stage, a parametric investigation of the sensitivity of the first flexural frequencies to
connection damage parameters j and c has been carried out in Ref. [23]. In particular, Fig. 8 shows the
relative variations of the first six frequencies expressed in terms of the parameter j, for a discrete set of fixed
values of c. By reversing the role of j and c, similar plots are obtained in Fig. 9. It can be observed that the
first and the second frequencies are weakly affected by even large variations of c, while they are rather
sensitive to variations of the shearing damaged parameter j. On the contrary, frequency variations associated
to higher-order modes almost exclusively depend on the axial stiffness degradation.

As for damage parameter identification, recourse to a variational method based on measurements of the
first natural frequencies has been done. Generally speaking, the idea, as one will see briefly, is to look for
optimum values of the parameters so as to reduce an error function defined by the differences between the
theoretical and the measured frequency values. It is well known that results of these variational approaches are
0 0.7 1.4 2.1 2.8 3.5
z [m]

0 0.7 1.4 2.1 2.8 3.5
z [m]

0 0.7 1.4 2.1 2.8 3.5
z [m]

0 0.7 1.4 2.1 2.8 3.5
z [m]

concrete slab steel beam
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Mode 4

Fig. 7. Comparison between the first four analytical and experimental (dots) flexural modes of T1PR beam in undamaged configuration.

Experimental data from Ref. [13].
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strongly conditioned by the choice of the error function to be minimised. Therefore, various choices of the
error function have been taken into consideration in the analysis.

In a first stage, the error function has been taken to coincide with the Euclidean norm of the distance
between the first N experimental frequencies and their analytical counterparts, namely

‘1ðj;cÞ ¼
XN

r¼1

f r;exp � f r;analðj;cÞ
f r;exp

 !2

. (15)

In Eq. (15), f r;exp and f r;analðj;cÞ are the experimental and the analytical values of the rth frequency in damage
state, respectively. Then, the damage identification problem can be formulated as follows:

to find ðej; ecÞ such that ‘1ðej; ecÞ ¼ min
ðj;cÞ2½0;1��½0;1�

‘1ðj;cÞ. (16)
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Fig. 10 shows the typical trend of the surface error which is met in the studied cases. For this objective
function choice, the optimum value has turned out coinciding with vanishing values of both parameters of
damage for all the damage configurations and for N ¼ 4; 5; 6. A possible justification of this result is to be
searched in the trend of the modelling errors produced by the analytical model of composite beam used for the
interpretation of the measurements. In fact, from Tables 2 and 3 one can see that the analytical model
overestimates all the experimental frequencies and modelling errors, assumed uniform in the various damage
configurations, grow raising as the mode order increases. Moreover, a detailed analysis of the numerical values
reveals that the set of frequencies predicted by the analytical model in the most severe configuration of damage
(D4) is the closest one to the experimental values for all the damage configurations. Therefore, it is evident
that the variational approach based on the error function of Eq. (15) leads to null values for the damage
parameters j, c and the identification turns out completely compromised.
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Fig. 10. Typical behaviour of the error function ‘1ðj;cÞ defined in Eq. (15) (T1PR beam, N ¼ 6).
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To be able to deduct the modelling errors in the model calibration, in a second stage the following error
function has been introduced:

‘2ðj;cÞ ¼
XN

r¼1

f r;exp � f �r;analðj;cÞ

f r;exp

 !2

; with f �r;anal ¼
f U

r;exp

f U
r;anal

� f �r;analðj;cÞ, (17)

where f U
r;exp, f U

r;anal are the rth natural experimental and theoretical frequencies of the undamaged beam. In the
expression of Eq. (17), the analytical frequencies are weighted by the factor f U

r;exp=f U
r;anal, which should take the

modelling error effect into account. It is implicitly assumed here that modelling errors, for every frequency,
keep themselves uniform for all the damage configurations. The surface error trend is now more regular and
single minimum is present for all the cases studied, see, for example, Fig. 11. The optimum point belongs at a
quite flat valley of the surface even in the case of light damages, for which, reasonably, one might expect a
certain residual modelling error influence any way. In the case of more severe levels of damage, say from the
D2 configuration forward, the minimum point is better definite and, generally, tends to arrange close to side
j ¼ 0, see also Table 5.

The error function of Eq. (17), at last, is suggested to define a new variational problem for the following
error function:

‘3ðj;cÞ ¼
XN

r¼1

Df r;exp

f U
r;exp

�
Df r;analðj;cÞ

f U
r;anal

 !2

, (18)
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Fig. 11. Typical behaviour of the error function ‘2ðj;cÞ defined in Eq. (17) (T1PR beam, N ¼ 6).

Table 5

Identified values of shearing, j, and axial, c, damage parameters (Euler–Bernoulli model) based on the optimisation problem of Eq. (17)

Damage j c

N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 4 N ¼ 5 N ¼ 6

T1PR beam

D1 0.35 0.35 0.35 1.00 1.00 0.85

D2 0.00 0.00 0.00 0.40 0.50 0.45

D3 0.00 0.00 0.00 0.10 0.20 0.20

D4 0.00 0.00 0.00 0.00 0.00 0.00

T1CR beam

D1 0.00 0.05 0.15 0.85 1.00 1.00

D2 0.00 0.00 0.00 0.25 0.60 0.95

D3 0.00 0.00 0.00 0.10 0.25 0.40

D4 0.00 0.00 0.00 0.00 0.00 0.00

Damage configurations as in Fig. 4.
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where Df r;exp and Df r;analðj;cÞ denote, respectively, the experimental and the analytical value of the frequency

variation between undamaged and damaged configurations corresponding to the rth mode. This objective
function, as in Ref. [6], is not definite any more in terms of the percentage differences between analytical and
experimental frequencies, but depends on the differences of the percentage variations of the analytical and
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experimental changes. In this approach, it is implicitly assumed that the analytical model, even if inaccurate in
the absolute estimate of the natural frequencies, is still able to reproduce in a sufficiently careful way the
percentage changes of frequency between the undamaged and a damaged configurations. In other words, as
frequency changes depend on the frequency sensitivity for small perturbations of the parameters, one is
assuming that the model is at least able to carefully estimate the sensitivity of various frequencies. The typical
trend of the surface error built with the expression of Eq. (18) is shown, by way of example, in Fig 12. By the
analysis of the plots, a certain likeness with the surface built by Eq. (17) clearly emerges. In particular
the optimum damage parameter values coincide with those obtained by the variational approach based on the
error function of Eq. (17). Moreover, a progressive decrease of the parameters, more marked for j, is noticed
as far as the damage increases. As expected, for the most severe level of damage, corresponding to
configuration D4, both the identified coefficients vanish.

Taking into account the above results, in what follows the optimal values of j, c corresponding to the
optimisation problem of Eq. (17) (or of Eq. (18)) with N ¼ 6 will be considered. With these optimal values for
j and c, the first frequencies of the damaged composite beam were estimated and compared to those
measured during experiments, see Columns 5–16 of Tables 2 and 3, for T1PR and T1CR beam, respectively.
It turns out that the calibrated model is able to accurately reproduce the first natural frequencies for the
intermediate damage configurations D1, D2, D3, as well as for the severe damage state D4. The variations of
the analytical frequency values are fairly similar to those measured during tests and the percentage modelling
errors are almost the same for all the studied configurations. Finally, the model precisely reproduces the
experimental flexural modes, see, for example, Figs. 13 and 14 for T1PR beam in damaged configurations D2
and D4, respectively.
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It can be concluded that the proposed model, suitably calibrated via dynamic data, can be used to
accurately describe the actual behaviour of composite beams in flexural vibrations with severe and also
intermediate levels of damage, which is one of the two main aims of the present research. The second
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goal concerns damage identification based on frequency shift data. This issue will be discussed in the
next section.
4. Damage detection based on shift frequency data

The diagnostic technique which will be used to identify damage is an extension of that presented in Ref. [9]
for the localisation of severe damage (corresponding to level D4) in one end connector of a composite beam.
The identification of such a damage, roughly speaking, reduces the inverse problem to the localisation of the
fault, since it is a priori known that the damage stiffness coefficients vanish simultaneously, i.e. j ¼ c ¼ 0.
Assuming that damage is known to affect only one connector and, by symmetry, that it is known beforehand
to be located in one-half of the beam (the right one, for example), the inverse diagnostic problem posed in Ref.
[9] was the following optimisation problem:

to find ezi;ezi 2 fz1; . . . ; zpg � D

such that f ðeziÞ ¼ min
zk2D

XN

r¼1

ðDf r;exp � Df r;analðzkÞÞ
2, (19)

where D is the set of possible damage locations. This method allowed the unique localisation of the damage,
see Ref. [9].

The situation in the case of intermediate levels of damage is significantly different, since the identification
involves also the determination of the damage parameters j and c. To solve this diagnostic problem, the
approach proposed, for example, in Ref. [6] for assessment of diffuse cracking in a reinforced concrete beam
via frequency shifts has been followed. Under the a priori assumption that there is a single damaged
connector, a two-step procedure was implemented. In the first step, for a given tentative damage position zi,
the following variational problem was posed:

to find ðeji; eciÞ such that ‘3ðzi; eji; eciÞ ¼ min
ðj;cÞ2½0;1��½0;1�

‘3ðzi;j;cÞ, (20)

where ‘3ðzi;j;cÞ is given as in Eq. (18) for a damaged connector located at z ¼ zi. By solving the problem
shown in Eq. (20) for every i (i ¼ 9; . . . ; 16, i ¼ 12; . . . ; 23 for T1PR and T1CR beams, respectively, see Fig. 3),
we obtain

e‘3ðziÞ ¼ ‘3ðzi; eji;
eciÞ, (21)

which is now a function of the position variable only. Finally, the solution of the diagnostic problem is given
by finding the minimum of e‘3 ¼ e‘3ðziÞ on the finite set of connector positions D, namely:

to find ezi;ezi 2 D such that e‘3ðeziÞ ¼ min
zk2D

e‘3ðzkÞ, (22)

where D ¼ fz9; . . . ; z16g, D ¼ fz12; . . . ; z23g for T1PR and T1CR beams, respectively.
The results of the damage identification are shown in Figs. 15 and 16. The plotted functions e‘3 have been

obtained for N ¼ 4; 5; 6. Concerning T1PR beam, it can be seen that, starting from damage configuration D2,
the absolute minimum of the function e‘3 in Eq. (21) is well defined and the exact solution is uniquely found.
The identification is less clear for T1CR beam, where a significant local minimum of e‘3 appears around studs
15–17 and 12–17 in damage configurations D2 and D3, respectively. This different behaviour is due to the fact
that T1CR beam is obviously less sensitive to a damage in a single connector than T1PR beam and, therefore,
modelling errors can more easily mask the frequency changes induced by the damage. As expected, the
indication obtained for damage D1 is quite inaccurate, because of the probable perturbation of the specimen
caused by execution of the damage.

Finally, once the location ezi of the damaged stud is identified, the values of eji,
eci that minimize the error

function in Eq. (20) represent an estimate of the level of damage. Obviously, when the damaged stud is
properly located (from configuration D2 forward), these values coincide with those collected in Tables 5 and 8.
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5. A Timoshenko analytical model of composite beam

At the end of the previous section, it was shown that damage identification based on Euler–Bernoulli
model defined by Eq. (6) is able to locate the damage starting from level D2 only, since modelling errors
are too large with respect to the frequency changes induced by very small damages (level D1, in the
present case). This aspect is well known in the literature (see also Refs. [11,12]) and it has motivated the
introduction of a refined version of the Euler–Bernoulli model developed, namely Timoshenko model of
composite beam.

Most of the matter of this analysis follows the lines of Sections 2–4. Therefore, the interested reader is
referred to Ref. [23] for more details.

The Timoshenko model includes, in addition to the Euler–Bernoulli one, the influence of shear deformation
of the concrete slab and the steel beam, and it also takes into account the rotary inertia of the two beams.
Thus, the eigenvalue problem for a free–free composite beam with a damaged end connector is governed by
the coupled differential system defined in ð0;L� dÞ [ ðL� d;LÞ:

N 01 þ kdðu2 � u1 � ecf1 � esf2Þ þ o2r1u1 ¼ 0;

N 02 � kdðu2 � u1 � ecf1 � esf2Þ þ o2r2u2 ¼ 0;

T 01 þ mdðv2 � v1Þ þ o2r1v1 ¼ 0;

T 02 � mdðv2 � v1Þ þ o2r2v2 ¼ 0;

M 0
1 � T1 þ kdecðu2 � u1 � ecf1 � esf2Þ � o2r1

J1

A1
f1 ¼ 0;

M 0
2 � T2 þ kdesðu2 � u1 � ecf1 � esf2Þ � o2r2

J2

A2
f2 ¼ 0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(23)



ARTICLE IN PRESS

0

3x10-3

6x10-3

Stud

0

4x10-4

8x10-4

Stud

0

3x10-4

6x10-4

Stud
12

0

1x10-4

2x10-4

Damage D1

Stud

Damage D4

Damage D2

Damage D3

N = 4 N = 5 N = 6

13 14 15 16 17 18 19 20 21 22 23 12 13 14 15 16 17 18 19 20 21 22 23

12 13 14 15 16 17 18 19 20 21 22 2312 13 14 15 16 17 18 19 20 21 22 23

Fig. 16. Damage detection for T1CR beam (Euler–Bernoulli model): error function e‘3 ¼ e‘3ðzkÞ for different number of frequencies N and

k ¼ 12; . . . ; 23. Actual damaged stud: number 23.

M. Dilena, A. Morassi / Journal of Sound and Vibration 320 (2009) 101–124 119
with natural boundary conditions

NiðzÞ ¼ 0; TiðzÞ � giðzÞðv
0
iðzÞ þ fiðzÞÞ ¼ 0; MiðzÞ � jiðzÞf

0
iðzÞ ¼ 0, (24)

at z ¼ 0 and z ¼ L, i ¼ 1; 2, and jump conditions

½uiðL� dÞ� ¼ ½viðL� dÞ� ¼ ½fðL� dÞ� ¼ 0,

½NiðL� dÞ� ¼ ½TiðL� dÞ� ¼ ½MiðL� dÞ� ¼ 0, (25)

i ¼ 1; 2. In the above equations gi � GiAi=qi is the shearing stiffness of the ith beam transversal section,
Gi ¼ Ei=2ð1þ niÞ is the shear modulus, ni the Poisson coefficient of the ith material, and qi the shear factor of
the ith cross-section. Moreover, fi ¼ fiðz; tÞ is the rotation angle of the ith cross-section around axis X i,
i ¼ 1; 2.

A closed-form solution of the eigenvalue problem of Eqs. (23)–(25) was derived in Ref. [23] for composite
beams with stepwise constant coefficients.

The analytical model was defined by means of the same identification procedure used in Section 3 for
the Euler–Bernoulli model. Also in the present case, the axial stiffness of the connection was identified by
minimizing the error function (12) and the shearing stiffness was determined by imposing the coincidence of
the analytical and experimental frequency associated to the fundamental mode. The optimal axial stiffness is
slightly less than the value obtained by the Euler–Bernoulli model (0:40m0 instead of 0:50m0), whereas there is a
significant change in the shearing stiffness. The optimal value of k is 2:15k0 and 3:48k0 for beam T1PR and
T1CR, respectively. Finally, in the model, the shear factors q1 and q2 were assumed, respectively, 1.2 and 2.49,
and Poisson’s ratios n1 and n2 were assumed, respectively, 0.166 and 0.30.

Tables 6 and 7 compare the experimental and the analytical frequencies of T1PR and T1CR beams in
undamaged configurations and for damage states D1–D4. Generally speaking, all the first seven frequencies
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Table 6

Comparison between experimental and analytical frequencies (Timoshenko model) of flexural vibration modes for T1PR beam in

undamaged and damaged configurations (rigid motions are omitted)

Mode Undamaged Damage D1 Damage D2 Damage D3 Damage D4

Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D%

1 60.68 60.68 0.0 60.51 60.58 0.1 60.25 60.48 0.4 60.21 60.45 0.4 59.81 60.25 0.7

2 145.46 147.66 1.5 144.08 144.93 0.6 142.70 146.11 2.4 142.18 145.69 2.5 136.76 143.24 4.7

3 247.11 253.75 2.7 245.14 251.71 2.7 241.93 249.24 3.0 238.95 247.58 3.6 222.58 236.53 6.3

4 351.08 369.95 5.4 348.72 366.57 5.1 343.62 362.10 5.4 339.22 358.31 5.6 309.10 332.95 7.7

5 461.38 492.89 6.8 457.49 488.70 6.8 452.41 482.41 6.6 447.98 476.29 6.3 402.96 439.07 9.0

6 570.77 620.95 8.8 565.91 616.21 8.9 560.31 608.79 8.7 554.64 600.85 8.3 503.66 554.91 10.2

7 691.48 754.31 9.1 686.11 749.79 9.3 679.84 741.67 9.1 673.37 732.44 8.8 599.82 672.43 12.1

Identified values of the damaged parameters j and c as in Table 8. D% ¼ 100ðf anal � f expÞ=f exp. Frequency values in Hertz. Experimental

data from Ref. [13].

Table 7

Comparison between experimental and analytical frequencies (Timoshenko model) of flexural vibration modes for T1CR beam in

undamaged and damaged configurations (rigid motions are omitted)

Mode Undamaged Damage D1 Damage D2 Damage D3 Damage D4

Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D% Exp. Anal. D%

1 60.49 60.49 0.0 60.37 60.46 0.2 60.30 60.45 0.3 60.29 60.44 0.2 60.24 60.36 0.2

2 146.34 152.04 3.9 145.12 151.71 4.5 144.80 151.57 4.7 143.97 151.42 5.2 144.30 150.37 4.2

3 250.82 266.34 6.2 248.18 265.11 6.8 246.05 264.54 7.5 245.60 263.89 7.4 242.46 258.77 6.7

4 361.26 391.16 8.3 357.09 388.51 8.8 356.18 387.13 8.7 353.42 385.46 9.1 346.21 371.16 7.2

5 473.88 521.11 10.0 471.08 516.85 9.7 468.90 514.43 9.7 466.29 511.38 9.7 451.06 485.43 7.6

6 588.38 654.48 11.2 586.28 648.80 10.7 583.34 645.36 10.6 580.71 640.99 10.4 560.88 609.50 8.7

7 709.04 791.41 11.6 708.14 784.69 10.8 703.65 780.46 10.9 700.58 775.15 10.6 668.07 735.39 10.1

Identified values of the damaged parameters j and c as in Table 8. D% ¼ 100ðf anal � f expÞ=f exp. Frequency values in Hertz. Experimental

data from Ref. [13].
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are overestimated, with percentage errors less than half of those corresponding to the Euler–Bernoulli model,
see Columns 2–4 of Tables 6 and 7. These results confirm the trend already observed in Ref. [14].

The identification procedure illustrated in Section 3 for the calibration of the model in case of damage was
repeated for Timoshenko model. Poor results were obtained, as before, when the variational identification is
based on the error function (16). Conversely, the use of the error functions (17) or (18) allowed for a unique
and rather stable identification of the damage parameters j and c. The optimal values obtained by the
two methods are practically coincident and are collected in Table 8. As in the Euler–Bernoulli model, the
shearing stiffness vanishes starting from damage configuration D2, whereas the axial stiffness shows more
gradual reductions for increasing damage and it turns out to be slightly affected by the number N of
frequencies used. Measured and calculated frequencies for all damaged configurations are compared in
Columns 5–16 of Tables 6 and 7 (for N ¼ 6). Modelling errors are similar to those observed in the undamaged
configuration and, in general, Timoshenko model enhances the accuracy in describing the dynamic behaviour
of the composite system. A comparison of the first flexural modes shows a good agreement between
experimental findings and analytical estimates.

The damage identification method presented in the previous section has been applied on the basis of the
Timoshenko model. The final results are shown in Figs. 17 and 18. It can be observed that the Timoshenko
model slightly improves the accuracy of the identification, although localization of damage D1 still remains
somewhat uncertain.

For the sake of completeness, the damage identification technique was also applied to a Timoshenko model
in which the values of the axial and shearing stiffness of the undamaged beam were taken coincident with
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Fig. 17. Damage detection for T1PR beam (Timoshenko model): error function e‘3 ¼ e‘3ðzkÞ for different number of frequencies N and

k ¼ 9; . . . ; 16. Actual damaged stud: number 16.

Table 8

Identified values of shearing, j, and axial, c damage parameters (Timoshenko model), based on the optimisation problem of Eq. (17)

Damage j c

N ¼ 4 N ¼ 5 N ¼ 6 N ¼ 4 N ¼ 5 N ¼ 6

T1PR beam

D1 0.25 0.25 0.25 1.00 1.00 1.00

D2 0.00 0.00 0.00 0.30 0.35 0.40

D3 0.00 0.00 0.00 0.10 0.15 0.15

D4 0.00 0.00 0.00 0.00 0.00 0.00

T1CR beam

D1 0.00 0.00 0.05 0.30 0.70 1.00

D2 0.00 0.00 0.00 0.15 0.30 0.50

D3 0.00 0.00 0.00 0.10 0.15 0.25

D4 0.00 0.00 0.00 0.00 0.00 0.00
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those found in the Euler–Bernoulli model. Without going into details, this analytical model underestimates by
about 1:9% and 2:0% the fundamental frequency, respectively, for undamaged T1PR and T1CR beams. The
second and the third frequencies are also slightly underestimated, by about 2:7% and 1:9%, and 1:3% and
0:7%, for T1PR and T1CR beams, respectively, whereas high-order frequencies are overestimated, with
percentage errors which increase with the order of the mode up to 8% for the seventh vibration mode. Taking
into account the underestimate of the fundamental frequency and considering that large changes in the
shearing stiffness produce small absolute variations of the fundamental frequency, incidentally one can
explain the large changes obtained in estimating k by imposing the coincidence of the analytical and the



ARTICLE IN PRESS

0

3x10-4

6x10-4

Stud

0

5x10-4

1x10-3

Stud

0

3x10-3

6x10-3

Stud

12
0

1x10-4

2x10-4

Stud

Damage D1 Damage D2

Damage D3 Damage D4

N = 4 N = 5 N = 6

13 14 15 16 17 18 19 20 21 22 23 12 13 14 15 16 17 18 19 20 21 22 23

12 13 14 15 16 17 18 19 20 21 22 2312 13 14 15 16 17 18 19 20 21 22 23

Fig. 18. Damage detection for T1CR beam (Timoshenko model): error function e‘3 ¼ e‘3ðzkÞ for different number of frequencies N and

k ¼ 12; . . . ; 23. Actual damaged stud: number 23.
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experimental frequencies associated to the fundamental mode. Finally, one can show that with this definition
of the Timoshenko model of the undamaged beam, the final results of damage identification remain virtually
unchanged. This suggests that the proposed damage identification technique has a certain degree of stability to
slightly different choices of analytical model used in interpreting the measurements.

6. Conclusions

In this paper an Euler–Bernoulli model with a shearing-type strain energy of the connection has been
proposed to describe the dynamic behaviour of steel–concrete composite beams in undamaged configuration
and with partially degraded connection. In the experiments, the damage was simulated by means of a crack
of increasing depth produced on one end connector.

The mechanical model has been calibrated on the basis of dynamic tests carried out on specimens.
Analytical values of modal parameters, such as natural frequencies and mode shapes, show a good agreement
with measurements and a uniform degree of accuracy for all the damage configurations is observed. The
accuracy in reproducing the experimental data has been further improved by introducing a Timoshenko-type
model for the composite beam.

The two models have been used to detect damage by means of a variational-type method based on
frequency shift measurements only. Good indication, both for damage location and severity, has been
obtained when the first few flexural frequencies are included in identification. This shows that the frequency
variations contain information on the position of the damage. It should be noted, however, that all results
presented in this article are based on damage located at the ends of the composite beam. When the damage is
located in an internal connector, dynamic tests conducted by Biscontin and Wendel [24] and numerical
simulations carried out in Ref. [9], show that the variations in frequency are less than those induced by damage
in an ending stud. Therefore, it would be important to test the sensitivity of the proposed technique for the
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identification of these damage scenarios. As a first step, the development of an experimental research, such as
that presented in Ref. [13], on this issue would be highly desirable.

Other diagnostic methods based on dynamic data have been recently proposed to identify damage in
steel–concrete composite beams. Xia et al. [3] introduced a damage index based on frequency response
function measurements taken both on the slab and on the beams for damage detection in slab-girder bridges.
Their method has a local character and has been applied to the study of a scaled bridge model built in
laboratory. In Ref. [25] it was proved that the shearing stiffness coefficient can be uniquely reconstructed from
the frequency response function of the composite beam evaluated at one end of the beam, under the
assumption that only longitudinal motions are present. An extension of the above results has been obtained in
Ref. [26] when measurements are taken at both the ends of the beam. The full coupled vibrational problem,
which includes both flexural and axial motions, has been examined in Ref. [27]. A variational procedure based
on dynamical measurements taken at the boundary and, possibly, at some interior portions of the beam was
proposed and used for the identification of the shearing and axial stiffness of the connection. The encouraging
results found in Ref. [27] and the appreciable sensitivity to damage of flexural mode shapes shown in Ref. [13],
suggest that variational methods based on both natural frequencies and modal components may be useful to
improve the results of damage detection techniques on steel–concrete composite structures. This seems to be
another promising direction for further research on this field.
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